Showing posts with label brain cells. Show all posts
Showing posts with label brain cells. Show all posts

Friday, August 29, 2008

Antidepressants need new nerve cells to be effective, UT Southwestern researchers find

Researchers at UT Southwestern Medical Center have discovered in mice that the brain must create new nerve cells for either exercise or antidepressants to reduce depression-like behavior.

In addition, the researchers found that antidepressants and exercise use the same biochemical pathway to exert their effects.

These results might help explain some unknown mechanisms of antidepressants and provide a new direction for developing drugs to treat depression, said Dr. Luis Parada, chairman of developmental biology and senior author of a study in the Aug. 14 issue of the journal Neuron.

In animals, it was already known that long-term treatment with antidepressants causes new nerve cells to be generated in a part of the brain called the dentate gyrus. Exercise, which can also relieve the symptoms of depression, stimulates the generation of new nerve cells in the same area.

READ MORE @ EUREKALERT

Saturday, August 2, 2008

How Antidepressants And Cocaine Interact With Brain Cell Targets

In a first, scientists from Weill Cornell Medical College and Columbia University Medical Center have described the specifics of how brain cells process antidepressant drugs, cocaine and amphetamines.

These novel findings could prove useful in the development of more targeted medication therapies for a host of psychiatric diseases, most notably in the area of addiction.

Their breakthrough research, featured as the cover story in a recent issue of Molecular Cell, describes the precise molecular and biochemical structure of drug targets known as neurotransmitter-sodium symporters (NSSs), and how cells use them to enable neural signaling in the brain. A second study, published in the latest issue of Nature Neuroscience, pinpoints where the drug molecules bind in the neurotransmitter transporter — their target in the human nervous system.

READ MORE @ SCIENCE DAILY

Wednesday, January 2, 2008

Some Antipsychotic Drugs May Be Missing Their Mark

Drugs that treat depression, schizophrenia and other psychotic conditions and that target a particular protein on brain cells might not be triggering the most appropriate response in those cells, new research suggests.

The study by researchers at The Ohio State University Medical Center examined the serotonin 2A receptor, a protein on brain cells sensitive to the neurotransmitter serotonin.

This study examined the early chemical events that happen inside neurons when the 2A receptor is stimulated by serotonin and by a synthetic hallucinogenic agent that is thought to mimic serotonin.

The findings, published online in the early edition of the Proceedings of the National Academy of Sciences with an accompanying editorial, show that although both compounds combine with and activate this receptor, they trigger different chemical pathways inside the neuron.

READ MORE @ SCIENCE DAILY